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ABSTRACT 

Results  of  an  experimental  investigation  of  the  instantaneous 

blade  airloads  and  their  time  derivativ,es  are  presented  for  a  rotor 

blade  intersecting  a  completely  rolled  up  trailing  vortex. Para- 

meters  such  as  the  rotor  RPM,  vortex  strength,  and  intersection  angle 

were  examined  at  a  spanwise  station  of  0.95R. 

An unsteady  section  lift  coefficient  value  as  high  as 0 . 7  and 

its  time  derivative, 0.6 x 10 /sec, were  measured  during  the  vortex 

sweep. The values  were  found to decrease  with  radial  distance  from 

the  center  of  the  vortex. The commonly  heard  helicopter  blade  slap 

or  bang was clearly  heard  in  the  present  tests.  Test  results  indi- 

cated  vortex  interaction  is  negligible  for  rotor  plane  positions 

beyond  approximately  one  and'one-half  blade  chord  lengths  from  the 

vortex  center. 

3 

The rotor  blade  experienced  as  much  negative  lift  as  positive 

lift  during  its  encounter  with  the  tip  vortex.  Sample  photographic 

records  are  presented  in  order  to  show  the  influence of the  tip  vortex 

on the  blade  loading. 
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NOMENCLATURE 

Blade  chord C 

R 

cW 

r 

Z 

h 

V 

V 0 

'r 

L 

ca 
AC a 

c 
c0 

W 

a 

r 

Blade  radius 

Vortex-generated  wing  chord 

Radius  at  any  spanwise  station  from  center  of rotation. 
A l s o  running  variable  radial  distance  from  the  center 
of the  vortex. 

Distance  between  rotor  axis  and  vortex  axis,  defined in 
Fig. 2 .  

Radial  distance  from  the  center of the  vortex,  defined  in 
Fig. 1. 

Free stream  velocity 

Tangential  velocity 

Blade  velocity at spanwise  station r, = cor 

Blade  tip  velocity 

Loadlspan 

Section  lift  coefficient, L / 2  pVlc 

Maximum  section  lift  coefficient  difference  in  any  vortex 
sweep,  defined  in Fig. 13 

1 2  

Impulsive  time,  defined  in Fig. 1 3 .  

Maximum  angle of  attack  change  of  rotor  blade  in  any 
vortex  sweep. 

Vorticity at  any  radius 

Vorticity  at  center  of  vortex 

Width  of  vortex  at  which[= 2 
Core  radius  (radius  where v (r)  is a maximum) 

Circulation at  any radius 

(0 

e 

Circulation at  the  radius  'a'  for  maximum v e -  

ix 



AP Pressure  difference at a  chordwise  station 

cP Differential  pressure  coefficient; ap 
1 2 
7 PV, 

6 Intersection angle, defined  in  Fig. L 2 .  
I 

H Downstream  distance  from  vortex-generated  wing  trailing 
edge. 

Vortex-generated  wing  angle  of  attack. 
aW 

a Sectional  angle of attack of rotor  blade. 
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I .  INTRODUCTION 

A l i f t i n g   r o t o r ,   e i t h e r   w h i l e   h o v e r i n g   o r  moving  through a 

f l u i d ,   p r o d u c e s  a d i f f e r e n t i a l   p r e s s u r e   f i e l d   a c r o s s   t h e   r o t o r   p l a n e  

i n   o r d e r   t o   s u p p o r t  i t s  we igh t   and   p rov ide   t h rus t   fo r  i t s  forward move- 

ment.  It a l s o   l e a v e s   b e h i n d  a co ’n t inuous   vo r t ex   shee t   because   o f   t he  

l i f t   v a r i a t i o n   a l o n g   t h e   s p a n   o f   t h e   b l a d e .   T h i s   v o r t e x   s h e e t  r o l l s  

up r a p i d l y   i n t o  two d i s t i n c t   v o r t i c e s ,   o n e   a t   t h e   t i p   a n d   t h e   o t h e r   a t  

the   hub .  

The d i f f u s e   i n b o a r d   v o r t e x   s h e e t   t e n d s   t o   b e   d i s s i p a t e d  by v i s -  

c o s i t y  more r a p i d l y   t h a n   t h e   s t r o n g e r   o u t b o a r d   s h e e t   w h i c h   r o l l s  up 

i n t o   t h e  t i p  v o r t e x .  On a s i n g l e - b l a d e d   c o n f i g u r a t i o n ,   i f   r o l l - u p  

o c c u r s ,   t h i s   d i f f u s e   i n b o a r d   s h e e t  w i l l  form a hub   vo r t ex   w i th  a 

l a r g e r   c o r e   a n d   s m a l l e r   i n d u c e d   v e l o c i t i e s   t h a n   t h e   t i p   v o r t e x .  How- 

ever ,   on  a m u l t i - b l a d e d   c o n f i g u r a t i o n ,   t h e   r e l a t i v e l y  weak  hub v o r t i c e s  

f r o m   t h e   s e v e r a l   b l a d e s  w i l l  combine t o  form a s ingle   hub   vor tex   which  

i s  s t r o n g e r   t h a n   t h e   i n d i v i d u a l  t i p  v o r t i c e s .  But t h i s  hub   vor tex  i s  

c a r r i e d  down a n d   a f t   f r o m   t h e   r o t o r  by the   i n f low  and   f r ee - s t r eam  and  

s o  i s  r e l a t i v e l y   f a r  removed  f rom  the   b lade   pa ths .  Hence b l a d e   i n t e r -  

s e c t i o n   w i t h   t h i s   v o r t e x  w i l l ,  i n   g e n e r a l ,   n o t   o c c u r   a n d  w e  need  only 

c o n s i d e r   t h e   i n t e r s e c t i o n   w i t h   t i p   v o r t e x .  

The maximum t a n g e n t i a l   v e l o c i t y   i n d u c e d  by a t i p   v o r t e x   c a n   b e  

as h i g h  as 47% o f   t h e   f r e e   s t r e a m   v e l o c i t y 1 6 .  A fo l lowing   b l ade   can  

i n t e r s e c t  a t i p   v o r t e x   f r o m  a p reced ing   b l ade   and   expe r i ence  momen- 

t a r i l y  a sudden  change i n   v e l o c i t y   o r  a sudden  change i n   a n g l e   o f  

a t t a c k   o r   b o t h ,   d e p e n d i n g   o n   t h e   v o r t e x   o r i e n t a t i o n   r e l a t i v e   t o   t h e  



blade  direction.  These  events  are  shown  schematically in  Fig. 1. 

These  events  occurring on the  following  blade  give  rise  to  a  sudden 

impulse  or  load  variation  over  a  small  spanwise  distance  and  in  a 

short  interval  of  time. In total, what we experience,  the  structural 

vibrations  and  a  sharp  cracking  sound  known  as  blade  slap  or  bang,  is 

a  result  of  this  impulsive  load . The  magnitude  of  this  impulsive  load 

varies  with  changes  in  both  the  intersection  point  and  the  angle 8 .  

This  angle,  shown  in Fig. 2, is  the  angle  between  the  vortex  axis  and 

the  blade  direction. It was  shown  in  reference 13 that  the  effect  of 

the  vortex  will  be  larger  for  small  values of 8 than  for  values  near 

9 0 " .  

4 

Because  of  the  skewed  character  of  the  wake  system  during for- 

ward flight,  there  is  a non-uniform  distribution  of  induced  velocity 

over  the  rotor  disc  which  gives  rise  to  harmonic  loads  acting on the 

blades.  Most  of  these  variations  are  attributed  to  the  strong  tip 

trailing  vortices.  This  has  been  shown  theoretically by Miller 9' lo and 

Piziali et a1 . I 2  and  experimentally by Scheiman  and  Ludi . 14 

In most  theoretical  considerations  (References 9,17,18)  the 

wake  system  has  been  divided  into  two  sections,  namely,  the  "near" 

wake and  the  "far" wake.  The  near  wake is approximately  the  first 90" 

of  the wake  attached to  the  blade  and  is  comprised  of  all  elements  of 

shed  and  trailing  vorticity.  The  far  wake  is  the  remainder  of  the  wake 

system  and  is  comprised  of  root  and  tip  trailing  vortices.  Assuming 

the  spiral  vortex  lines  to  be  replaced by infinite  straight  vortex 

lines, Miller'' provides  a  simple  method  for  calculating  the  effect  of 

the  far wake. However  for  the  near  wake,  numerical  methods  have  been 

2 



Velocity  Profile Circulation 

" 

Idealized  Blade  Vortex  Intersection 

Vortex  Circulation 

Circulation Velocity  Profile 

- 
Idealized  Blade  Vortex  Intersection 

Vortex  Circulation 

" 

Vortex  Core  Axis  Parallel  to  Span of B'lade 

Vortex  Axis 

= ==\-\ 
Vortex  Core  Axis  Parallel  to  Direction of Blade  Motion 

Fig. 1 Blade  Vortex  Intersections 
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F i g .  2 S k e t c h  of Blade Passing Through 
a Tip   Vor tex  
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used ',I2. Willmer18  has  used  an  extension  of  classical  lifting  line 

theory  to  take  into  account  the  trailing  components. 

Previous  analysis,  such  as  those  cited,  have  been  primarily 

concerned  with  unsteady  lift  as  affected by an  entire  wake  under  the 

assumption  of  potential  flow.  Little  attention  has  been  paid  to  the 

details of the  interaction  between  a  blade  and  isolated  vortex  in 

terms  of  expected  blade  aerodynamic  response  and  possible  real  fluid 

effects.  Such  description  requires  a  knowledge of  the  unsteady 

pressure  field  associated  with  the  interaction. 

This  investigation is  concerned  only with the  rotor-isolated 

vortex  interaction  problem.  The  rotor  blade is a  symmetrical  airfoil 

at zero  pitch  angle. The rdtor  disc  plane  is  also at a  zero  angle of 

attack.  The  rotor  blade  intersects  a  completely  rolled  up  vortex 

generated by a  fixed  wing  ahead  of  the  rotor  plane.  The  time  history 

of the  chordwise  pressure  distribution  is  recorded.  The  principal 

variables  in  this  experiment  are  the  rotor RPM, vortex  structure  and 

strength,  rotor  plane  position  and  angle  of  intersection. 

5 



11. PREVIOUS  INVESTIGATIONS 

Time-dependent  spanwise  and  chordwise  pressure  distributions 

have  been  measured on full-scale  helicopter  rotors  using  conventional 

differential  transducers ” 3’ 14. However  these  transducers  may 

experience  a  time  lag  in  their  pressure  measurements  because  of  the 

connecting  tube. In addition,  they  also  have  a  lower  frequency 

response  than  the  transducers  used  here. 

A similar  type  of  investigation was done  at  Southampton 

University5  in  connection  with  helicopter  blade  slap. In that in- 

vestigation,  a  simulated  tip  vortex was generated by means  of  two  air 

jets  mounted  slightly  offset  in  opposite  directions.  The  maximum 

induced  angle or induced  velocity  obtained  from  the  above  method  is 

only 75% o f  that  of an actual  tip  vortex . Measurements  were  made  of 

sound  pressure  levels  rather  than  detailed  pressure  measurements. 

I 

In a  paper  by Simons15,  the  problem  of  bladelvortex  interaction 

on  rotors  was  dealt  with  theoretically  using  lifting  line  theory  for 

the  computation of circulation  distribution  along  a  wing  span  for 

various  locations  of  the  vortex  line  with  respect  to  the  wing  and  also 

for  different  vortex  core  radii.  The  effect  of  blade-vortex  inter- 

section  is  described by  two  parameters,  the  effective  height  and 

strength  factor.  The  effective  height  is  just  the  actual  height  of 

the  vortex  from  the  wing  plus  one-half  of  the  blade  chord.  The 

effective  strength  factor is  the ratio of  the  maximum  wing  bound 

circulation,  including  the  effects  of  the  intersecting  vortex,  to  the 

strength  of  the  intersecting  vortex.  However,  for  vortex  heights  less 

6 



than  three-quarters  of  a  chord  this  concept  becomes  increasingly 

inaccurate.  Simons  thus  suggests  a  more  realistic  blade/vortex 

general  investigation  is  required  before  these  concepts  can  be  applied 

directly  to  the  helicopter  rotor. 

Significant  airload  pressure  variations  due  to  rotor  tip  vortex 

interference  have  been  measured  in  flight . Section  pressures  were 

considerably  different  from  those  of  a  two-dimensional  airfoil  over 

significant  areas  of  the  rotor  disc,  apparently  due  to  the  combined 

effects  of  compressibility  and  the  disturbances  from  tip  vortex  inter- 

ference. The local  Mach  number  can  reach  the  critical  Mach  number 

especially  near  the  tip  of  the  advancing  blade. This  can  separate the 

boundary  layer,  thereby  causing  a  change  in  the  chordwise  pressure 

distribution. A typical  response  of  the  chordwise  pressure  distribution 

to  the  vortex  interference  spike  for  the  aft  rotor,  taken  from Fig. 7 

of  the  cited  reference,  is  shown  in Fig. 3 .  It was  also  noticed  that 

it requires  about 50" of  azimuth  travel  before  the  blade  section  per- 

formance  returns to a  two-dimensional  character. 

13 

Scheiman  and Ludil' also  observed  the  tip  vortex  interference 

on the  following  blade  in  a  free  flight  investigation.  The  main 

differences  between  their  measured  results  and  the  results  from  uniform 

inflow  theory  were  shown  to  occur  near  the  intersection  of  the  blade 

with the  trailing  vortices  of  the  preceding  blade. In addition,  the 

influence  of  the  trailing  vortices  produce  harmonic  blade  loadings  of 

all  orders,  and  the  percentage  of  the  contribution  to  the  higher 

harmonics  is  large. 

7 



Ref: 13 
Fig. 7 

I 

f 
$ =  113" Span  Station: 85% 

Velocitv: 108 knots 

I I I 

20 40 60 

Chordwise  Location  from  Leading  Edge 
- Percent  Chord 

Fig. 3 Typical  Chordwise  Pressure  Distributions 
of Aft  Rotor  in  Proximity of Forward 
Rotor  Tip  Vortex 
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111.  DESCRIPTION OF EXPERIMENTAL  SET-UP 

The  experimental  set-up  used  in  the  present  investigation  is 

shown  in Fig.  4a. It primarily  consists  of  a  heavy  structure  made  up 

of ' L '  sections  in  order  to  make  it  rigid  and  free  from  oscillations. 

A rigid,  horizontal  base was attached  to  it.  Adjustment  was  provided 

for  the  base  to  be  positioned  vertically  and  horizontally so that  the 

blade  could  intersect  the  vortex  system  at  different  orientations. 

A thick-walled  hollow  shaft was mounted  on  the  base by means  of  two 

pillow  blocks.  On  one  end  of  the  shaft,  a  single,  instrumented  blade 

was fixed  with  the  other  end  coupled  to  a  twelve  channel  slip  ring 

unit.  The  blade was counterblanced by  using a  lead  sphere  fixed on 

a  threaded  rod.  The  diameter  of  the  sphere  was  chosen  from  a con- 

sideration  of  the  centrifugal  force  and  wake  size.  For  normal 

operation  it  is  located  at  a  radius  equal  to  half  of  the  blade  radius. 

An ellipsoidal  body  of  revolution  was  used  for  the  nose  fairing.  The 

shaft was driven by a 3 / 4  H.P. variable  speed  motor  mounted  underneath 

the  base  plate  using a belt  system. 

Rotor  Blade 

A single  bladed  rotor  system was used  for  the  tests.  This was 

adopted  in  order  to  eliminate  the  tip  and  wake  effects  of  the  other 

blades. It was also  shown  in  reference (1) that  the  removal  of  one 

blade  from  a  two  bladed  rotor  system, no serious  differences  resulted 

in  loading,  total  lift  variation,  or  inflow  distribution. 

9 
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Fig. 4a  Experimental  Set-Up 
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The rotor  blade  dimensions  were  dictated  mainly  by  the  testing 

facilities  available  and  the  desire to obtain  reasonable  data  for com- 

parison  with  theory. The blade was one  foot  in  radius  and  two  inches 

in  chord  having  a NACA 0015 airfoil  section  made of high  strength 

aluminum  (Figs. 4b and 4c). The tip was a  revolution  of  the  blade 

section.  Grooves  of  sufficient  size  and  depth  to accoinmodate the 

miniature  pressure  sensors  were  made on one  surface  of  the  blade  at 

four  spanwise  stations; 0.95R,  0.90R,  0.85R and 0.75R. The  electri- 

cal  lead wires  followed  along  the  spanwise  groove on the  blade  through 

the  shaft  to  the  slip  ring  unit.  The  overall  stiffness E1 of  the 

blade  was 0.01585 x 10 lbs  in2  and  the  mass  distribution M was 

0.0013 slugs/in. 

6 

Vortex  Generation  and  Measurements 

The  experiments  were  conducted  in  the  subsonic  wind-tunnel  of 

the  Department  of  Aerospace  Engineering  at  The  Pennsylvania  State 

University.  The  tunnel was run  with  an  open  jet  test  section,  such 

that  the  rotor  could  be  moved  up  and  down. A bell-mouth  entrance 

section  was  used  for  smooth  re-entry  of  air  into  the  diffuser. 

Pressure  surveys  were  conducted at  two  downstream  distances  in  both 

horizontal  and  vertical  directions  in  order  to  check  for  flow  uni- 

formity.  It was found  that  the  flow was uniform  within 2% variation. 

A 6" chord  wing  having  the  same  aspect  ratio  and  airfoil 

geometry  of  the  rotor  blade  (Fig.  4c) was  mounted  vertically  at  the 

end  of  the  contraction  section  for  the  generation  of  a  vortex  system. 

Vortex  measurements  were  made  for  wing  angles  of 6" and 10". 
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Measurements were made  using  the  vorticity  meter  developed  by 

6 May . This  meter  consists  of  four  unpitched  steel  vanes  mounted on 

an aluminum  spinner. A s  the  shaft  rotates,  a  hole  drilled  through  the 

shaft  allows  passage  of  light  from  a  miniature  light  bulb  to  a  photo- 

voltaic  cell. Two pulses  of  light  pass  through  the  hole  for  each re- 

volution.  These  pulses  are  counted  electronically  as  counts per  second 

which are  used  as  a  measure  of  the  vorticity. A typical  vorticity 

distribution  in  the  rolled-up  tip  vortex is shown  in Fig. 5. Contours 

of  constant  rotational  speeds  are  shown  in Fig. 6 at a  transverse 

plane of 3 chord  lengths  downstream.  Measurements  were  also  taken  at 

a  downstream  distance  of 5 chord  lengths.  These  distances  approxi- 

mately  locate  the  rotor  position  and  rotor  blade  during  its  rotation. 

The tangential  velocity  in  a  vortex  can  be  obtained by numeri- 

cally  integrating  the  vorticity.  Since  the  vortex  was  axisymmetric, 

as  seen  from  contour  plot  (Fig. 6) the  tangential  velocity v (r)  at  any 

radius  r is 

e 

r 
v (r) = h (dh e r 

where 5 is  vorticity  at  any  radius  h,  radianslsec. A calibration 

coefficient  of 0 .80 ,  taken  from  reference 16 was used  in  the cal- 

culation of  tangential  velocity in order  to  take  into  account  the 

frictional  and  windage  losses.  Figure 7 shows  the  variation  of 

tangential  velocity with the  vortex  radius  for  the 6" and 10" wing 

angles. The maximum  tangential  velocity  obtained  for  the 10" case 

is  nearly 46% of the  free  stream  velocity.  This is in  general  agree- 

ment with Spencer et  al. . 16 
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The  circulatory  strength of the  vortex  is  obtained by numeri- 

cally  integrating  the  vorticity. 

and,  using  an  exponential  fit,  the  vorticity  distribution  through  the 

vortex  core  is  of  the  form 

5 = 'lee (3.3) 

where ( is  the  maximum  vorticity  and  w  is  the  value  of  h  for  which 
0 

c = 5 0 / 2 . 0 '  The  circulation  equation  results  in 

9 

r = -  3-t W L  
10ge2 (0 (3.4) 

The  circulatory  strength  of  the  vortex  for  the  two  angles, 6" and  10" 

were 9.30 ft /sec  and 15.25 ft  /sec  respectively, in  agreement  with 

reference (16). The  core  widths  were 0.24" and  0.26"  and  maximum 

2 2 

vorticities  were  3425/sec  and  4710/sec  respectively. 

Similar  measurements  and  calculations  were  also  made  for  the 

same  negative  angles  of the wing  and  it was  found  that  the  vortex 

structure  and  velocity  variations  were  the  same  as  previously ob- 

tained.  This was necessary  because  the  rotor  blade  is  instrumented 

on  one  surface  only. To get  the  pressure  distribution on the  other 

surface,  the  direction  of  the  vortex  rotation  is  changed by changing 

the  angle  of  the  wing  from  a  positive  to  a  negative  angle. 

Pressure  Measuring  Equipment 

The  pressure  transducers  used  in  this  experiment  were  ultra 

miniature  pressure  sensors  made by Kulite  Semiconductor  Products  Inc. 
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Each is  made  by  using  a  monolithic  integrated  circuit  Wheatstone  bridge 

directly  formed on a  Silicon  diaphragm.  They  are  1/8"  in  diameter  and 

0.002" thick with a  natural  frequency  of 40 kc and  a  sensitivity  of 

approximately 0.75 mv/v/psi.  These  sensors  have  a  range  of 0-25 psi. 

A l l  gauges  were  statically  calibrated  for  linearity  and  sensi- 

tivity. A typical  calibration  curve  is  shown  in  Figs. 8a and  8b,  one 

for  low  and  the  other  for  high  pressure  ranges. The output  varies 

linearly with pressure,  passing  through  zero,  independent of excitation 

voltage  within  the  range  prescribed. The sensitivity  varied  in  the 

range  from 0.6 to 0.8 mv/v/psi  for  different  pressure  sensors. The 

temperature  sensitivity  of  the  gauges  was  less  than 2%/10O0F of  full 

scale  output.  This  effect  was  partially  reduced by running  the  blade 

in  the  flow  for  a  sufficient-period of time  before  any  measurements 

were  made. By  using  this  method,  the  blade  reaches  a  stable  tempera- 

ture  and  any  differences  noticed  are  due  to  vortex  interaction  with  the 

blade. 

After  calibration,  these  sensors  were  cemented by means  of 

Eastman  Kodak 910 adhesive on the  blade  groove  at  the  required  spanwise 

and  chordwise  locations.  Nitro-methane  solvent  dissolves  the  adhesive, 

permitting  the  same  sensors  to  be  used  at  various  spanwise  stations. 

Power  Supply  and  Bridge  Balancing  Unit 

A s  specified by Kulite,  the  gauges  can  be  excited by 0-10 volts 

D . C .  or A . C .  RMS, or 0-10 Ma. constant  current.  Most  of  the  tests  were 

conducted  at 6 V D . C .  

A six-channel  universal  bridge  balance  unit  Heiland "82-6", 

which serves  as  both  a  power  supply  and  balancing  unit, was used.  The 
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gauge   i npu t s  were connected i n  p a r a l l e l   a n d  were brought   ou t   th rough 

t h e   s l i p   r i n g   u n i t   u s i n g   o n l y  two r i n g s .  They were a g a i n   c o n n e c t e d   i n  

p a r a l l e l   t o   t h e   b a l a n c i n g   u n i t .  T h e   i n p u t   v o l t a g e   t o   t h e   g a u g e s  was 

set  by  means  of t he   coa r se   and   f i ne   vo l t age   ad jus tmen t .   The   gauge  

o u t p u t s  were b r o u g h t   o u t   i n d i v i d u a l l y   t h r o u g h   t h e   s l i p   r i n g   u n i t   a n d  

c o n n e c t e d   t o   t h e   b r i d g e   b a l a n c e   u n i t .  The o u t p u t s   f r o m   t h e   b a l a n c i n g  

u n i t  were f e d   t o   a n   o s c i l l o s c o p e   t h r o u g h  a c h a n n e l   s e l e c t i o n   s w i t c h  

and a common D . C .  a m p l i f i e r ,  Type 3520 DANA. 

Balancing  was  done by f i r s t   o b s e r v i n g   t h e   t r a n s d u c e r   o u t p u t  

meter fol lowed  by  the  scope.   The  experiments  were conduc ted   a t  a g a i n  

of 1000 and a band  width  of 1 k c .   T h i s   c a n   i n c l u d e   a l l   h i g h e r   h a r m o n i c s  

o f   l o a d   f l u c t u a t i o n s .  A b lock   d iagram  of   the   wi r ing  i s  shown i n   F i g .  9 .  

Counting  and  Triggering  Mecbanism 

A s  m e n t i o n e d   p r e v i o u s l y ,   t h e   r o t o r   w a s   r o t a t e d   u s i n g  a commer- 

c i a l   va r i ab le   speed   mo to r   and  a p u l l e y   a n d   b e l t   s y s t e m   ( F i g .   4 a ) .  The 

pu l l ey   d i ame te r s   u sed  were i n  1:l r a t io   and   t hus   t he   speed   o f   t he   mo to r  

i n d i c a t e s   t h e   s p e e d   o f   t h e   r o t o r   e x c e p t   f o r   t h e   p l a y   i n   t h e   b e l t .  To 

o b t a i n   t h e   c o r r e c t  RPM o f   t h e   r o t o r ,  a t h i n ,   c i r c u l a r   d i s c  was  mounted 

o n   t h e   s h a f t   a s  shown i n   F i g .  10. T h i r t y   e q u a l l y   s p a c e d  118” diameter  

h o l e s  were d r i l l e d   a l o n g   t h e   c i r c u m f e r e n c e   o f   t h e   d i s c .  A s e m i c i r c u l a r  

s l o t t e d   a r c h  w a s   t h e n   f i x e d   o v e r   t h e   d i s c .  A l i g h t   s o u r c e  ( 2 . 2  V Bulb) 

and   pho to   ce l l  were f i x e d   o n  a U-sect ion  which  was  then  mounted  on  the 

a r c h   s u c h   t h a t  i t  a l i g n e d   w i t h   t h e   h o l e s   o n   t h e   d i s c .  The output   f rom 

the   pho to   ce l l ,   wh ich  were approximately 2 V D . C .  p u l s e s  were f e d   t o  

a n   e l e c t r o n i c   c o u n t e r   s i m i l a r   t o   t h e   o n e   u s e d   i n   v o r t e x   m e a s u r e m e n t s .  

The RPM of   t he   sha f t   was  counts’sec x 60 = 2 x c o u n t s / s e c .  30 
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Fig. 10 Counting  and  Triggering  Mechanism 
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T r i g g e r i n g  was necess i a t ed   because   t he  time i n v o l v e d   i n   p a s s i n g  

through the vor tex   sys tem  was   approximate ly  3 m i l l i s e c o n d s .   I n   o r d e r  

t o   a n a l y s e   t h e   r e s u l t s   o c c u r r i n g   d u r i n g   t h i s   p e r i o d ,   t h e   s i g n a l  must 

b e   t r i g g e r e d   j u s t   b e f o r e   i n t e r s e c t i n g   t h e   v o r t e x  so  t h a t   t h e   s i g n a l  

can  be  expanded  on  the time s c a l e .   T h i s  was achieved  by us ing   ano the r  

l i gh t   sou rce   and   pho to   ce l l   sys t em  s imi l a r   t o   t he   p rev ious   one   moun ted  

on   t he  same s l o t t e d   a r c h .  

An 1/8" d iame te r   ho le   on   t he  same d i s c   a t  a d i f f e r e n t   r a d i u s  

was   u sed   fo r   t r i gge r ing   t he   s cope .  Whenever t h i s   h o l e   p a s s e d   i n   l i n e  

wi th   t he   s econd   pho to   ce l l   sys t em,  a. p u l s e  was p roduced .   Th i s   pu l se  

was f e d   t o   t h e   e x t e r n a l   t r i g g e r  of the  scope  and,  by a d j u s t i n g   t h e  

t r i g g e r   l e v e l   a n d   f r e e   r u n  mode, t h e   h o r i z o n t a l  sweep was t r i g g e r e d .  

The  second  photo c e l l   s y s t e m  was a d j u s t a b l e   o n   t h e   s l o t t e d  

s e m i - c i r c u l a r   a r c h   s u c h   t h a t  i t  t r i g g e r e d   t h e   s c o p e   f o r  a l l  p o s i t i o n s  

of  sha f t   and   spanwise   l oca t ion   o f   t he   gauges   be fo re   vo r t ex   i n t e r -  

s e c t   i o n .  

25 



IV . EXPERIMENTAL  INVESTIGATION 

The experimental  program was conducted  in  the 2-112 ft  by 3 ft 

subsonic  wind-tunnel of the  Department  of  Aerospace  Engineering at The 

Pennsylvania  State  University. A test  velocity  of 75 miles per  hour 

was used. 

The test set-up and  the  vortex  generating  wing  in  the wind- 

tunnel  are  shown  in Fig. 11. Four  pressure  sensors  were  cemented 

flush  in  milled  recesses  at  a  radial  station  of 0.95 and  chordwise 

percentage  locations of 6 . 2 5 ,   2 8 . 7 5 ,   4 8 . 7 5 ,  and 6 8 . 7 5  (Fig. 4b and  4c) 

and  potted  with 3M caulking  compound No. EC 1126 ,  finished to  the  blade 

profile  shape. 

With the  vortex  generator  and  test  set-up  in  the  test  section, 

the  tunnel was brought  up  to  the  test  velocity.  The  vortex  leaving 

from  the  generator was observed  and  approximately  located  in  space by 

using  a  tuft  at  the  end  of  a  long  rod.  Next  the  shaft was moved  such 

that  the  vortex  axis  and  the  shaft  axis  lay on a  horizontal  plane, 

together  forming  the  reference  station  for  vertical  movement  of  the 

shaft. 

The vortex  core  axis  in  the  horizontal  direction  was  located by 

moving  the  rotor  horizontally  and  at  the  same  time  observing  the  scope 

screen  for  the  maximum  difference.  The  output  from  the  first  pressure 

sensor was found  to  be  significant  even  for  small  interferences. 

After  a  considerable  warming up  period,  the  outputs  of  the 

sensors  were  individually  zero  balanced  as  described  earlier.  The 

triggering  photo  cell was positioned  on  the  circular  arch  such  that 
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the  sweep  started  before  the  blade  came  into  the  vortex  field. 

Experiments  were  conducted  for  four  vertical  locations  of  the 

shaft  axis  (i.e.) = 0,  0.25, 0.50 and 0.75, five to  six  locations 

of  the  rotor  plane  (i.e.) - = -1.0 to  1.0,  two  vortex  strengths  and 

structures  and  two  rotational  speeds.  Results  reported  in  this 

thesis  are  for  a  spanwise  station  of 0.95R. Additional  measurements 

at  the  other  spanwise  locations  will  be  made  in  the  future.  The 

results  were  recorded  on  nearly  200  Polaroid  photographs. Each 

photograph  contained  the  time  wise  variation  of  the  pressures  of  all 

the  four  chordwise  pressure  sensors. 

R 
h 
C 

Data  Reduction 

These  traces  from  the  Polaroid  photographs  were  read  using  a 

trace  reader  at  every 0.2 millisecond  intervals with the  results 

being  recorded on IBM cards.  The  results  were  matched  with  the 

corresponding  results  of  the  pressures  on  the  other  surface  of  the 

blade.  The  matched  punched  cards  were  then  processed  through  an 

IBM 360167 computer.  The  results  were  tabulated  in  the  form of 

distance  travelled  in  chord  lengths,  loadinglin,  section  lift 

coefficient  and  differential  pressure  coefficient  along  the  chord 

at  each  interval  of  time. 
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V. RESULTS AND DISCUSSION 

A typical  variation of  pressures  as  the  blade  passes  through 

the  vortex  at  different  radial  planes  is  shown  in Fig. 12. The 

intensity  of the  vortex  interaction is seen to  decrease  as  the  rotor 

plane moves away from  the center  of  .the  vortex. This is as  expected 

since  the  induced  velocity  decreases. 

Figure 13 shows  the  variation  of  the  section  lift  coefficient 

as  the  blade  cuts  through  the  vortex  center. The general  shape  and 

trend  agree well with that  reported  in  reference ( 4 ) .  The section 

lift  coefficient  difference, ACa, during a time  interval  of 1 milli- 

second was noticed  to be  as  high  as 0.7. This  time  interval 

corresponds  to 1.15 chord  lengths  travel  of  the  blade. The building 

up  of  the  load  occurs  faster  than  the  decay  of  the  load.  Generally 

the  blade  must  be 8 to 10 chord  lengths  from  the  vortex  before  the 

influence is negligible.  This  will,  of  course,  depend on the  vortex 

dimensions  and  the  orientation  of  the  blade. 

Typical  instantaneous  chordwise  distributions  of  the 

differential  pressure  coefficient  are  shown  in Fig. 14. These are 

shown at  the  instant when the  blade  experiences  maximum  and  minimum 

peak  loads. Results are  presented  for  two  vortex  strengths. The 

magnitudes  are  less  for  the  weaker  vortex  clearly  showing  the  effect 

of the  induced  velocity. 

As the  blade  passes  through  the  vortex,  the  pressure  changes 

from positive  to  negative in  a  typical  time  interval  of 1 millisecond. 
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The  pressure  distributions  are  quite  irregular,  especially  for 

negative  lift . 

The maximum  lift  difference  and  its  time  variation  in  a  sweep 

are  important  for  the  estimation  of  the  structural  and  fatigue  life  of 

the  blade  and  for  the  blade  slap,  i.e.,  'bang  power'  and  'bang  energy'. 

So, for  the  remaining  of  the  figures  the  variations of the  above  two 

quantities  which  are  defined in  Fig. 13 are  discussed. 

For  the  two RPM's, the  effect  of  passing  through  the  vortex  at 

various  distances  from its  center is shown  in Fig. 15a. The maximum 

section  lift  coefficient, ACa, decreases  as  the  rotor  blade mmes 

away  from  the  vortex  axis,  unsymmetrically. The values of AC are 

lower  for  the  lower  vortex  strength.  The  asymmetry  is  due  to  the 

unequal  resultant  velocity  and  angle  of  attack  which  the  blade 

experiences on either  side of  the vortex.  Though  the  values of AC 

for  the 2000 RPM case  are  smaller  than  those  for  the  case of 1500 RPM 

under  similar  conditions,  the  actual  lift  increments will be  greater 

due to  the  higher  velocity. In Fig. 15b  the  variation  of  the  maximum 

angle  of  attack  difference  in  a  sweep  with  radial  distance is shown 

for  the  two RPM values  tested. Like the  lift  variation,  these  angles 

also  vary  unsymmetrically on either  side  of  the  vortex  center. 

a 

a 

Figure 16 shows  the  variation  of AC with rotor  plane  position, a 
Z '  h - for  various  positions  of  shaft  axis, 5 for  each  of  the  two RPM's 

C' 

tested. A s  explained  earlier,  the  values  for  the  higher RPM are 

lower  compared to the  lower RPM. When  compared at a  particular RPM, 

the  maximum  section  lift  coefficient  difference, AC increases 

slightly  as  the  axis  of  rotation, 3 is moved from vortex  center. 
R' 

Z 
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i v _  
These  increments  in AC are  due  to  two  factors:  one  is  the  increased a 
!velocity,  i.e., addition  of  VSin I# to or,  while the  other  is  the 

increased  size  of  the  vortex  as  the  blade  passes.  Using  equations A.1: 

and.A.2 of  Appendix,  it  is  noticed  that  the  difference, a, increases 
with increasi,ng  vortex  size. These  increments  are  smaller  for  the 

positive  radi,us  side of the  vortex  than  those  for  the  negative  side. 

These  positive  and  negative  radius  directions  are  defined  in Fig. 1 

With respect  to  the  rotational  direction  of  vortex. 

A  sample  of  peak  positive  and  negative  lift  coefficient 

variations  (see Figs. 1 and 13) as  the  blade  cuts  through  the  vortex 

at  various  radial  distances  from  the  vortex  center  are  shown  in  Fig. 17 

for two  positions  of  the  shaft  axis, E. The  individual  peak  values 

occur  approximately  when  h  is  zero  but  the  curves  are  unsymmetrical. 

The  negative  peak  lift  coefficient  increases  and  the  positive  lift 

Z 

coefficient  decreases  as  the  intersection  angle, 6, decreases. It is 

also  noticed  from  the  above  figure  that  the  negative  peak  section  lift 

coefficient  for  the  case  of 6 = 41.5"  is  as  great  in  magnitude  as  the 

positive  peak  lift  coefficient  for 6 = 9 0 " .  

It is  shown  in  reference 15 that  the  total  sound  energy  per 

unit  time  radiated  into  the  far  field  is  proportional  to  the  square 

of  the time-rate-change of  the  fluctuating  load  per  unit span.  The 

'bang  power'  and  'bang  energy'  also  depend  on  these  time  rate  changes. 
AC 

The variation  of  this  time-rate-change,  with  rotor  plane a 

h position, -, for  the  two  values  of RPM's and  the  vortex  strengths,  are 
shown  in  Figs.  18a  and  18b. The general  variation  and  trend  is 

C 

similar  to  that  of  the AC (Fig.  Ea). There is a  considerable  decrease a 
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in the  rate, AC /At, with  decrease  in  vortex  strength. It has  been 

observed  experimentally16  that  the  maximum  induced  velocity in a 

a 

vortex  increases  linearly with increasing  angle  of  attack,  whereas 

the width  shows  little  change  for  a  standard tip wing.  When com- 

paring  the  results (-) at a  constant RPM for  two  vortex  generating 

wing  angles,  the  vortex  induced  velocity  changes  considerably  whereas 

Aca 
at 

the  impulsive  time  changes  very  little.  Therefore  the  time-rate-change 

varies  considerably when the  two  vortex  strengths  are  compared. The 

variations  of  the  time-rate-changes  of  section  lift  coefficients, 
AC 

A t  ' ' for  different  positions of the  rotor  axis, - at  the  two RPM's 

tested  are  shown  in  Figs.  19a  and  19b. The curves  drop  off on either 

Z 
R' 

- 

side of the  center  of  the  vortex  and  all  the  peak  values  occur  near 

the  center,  as  expected. 

The variations  of  these  two  parameters, ACa and - with  rotor at 
axis  positions, 2 are  shown  more  explicitly  for  the  two  values of RPM Z 

tested in  Figs. 20a  and  20b. This  rotor  axis  position, 3 in  turn 

fixes  the  intersection  angle  as  defined  earlier. For example - = 

gives an intersection  angle of 90 degrees,  i.e.,  the  blade  is 

completely  in  the  vortex  field  and,  for - = 1, the  intersection  angle 

is  zero  degrees. The maximum  section lift  coefficient  difference, AC a' 
increases with decreasing  intersection  angle. The same  result  has  been 

' R  z o  

R 

reported  in  reference (13 ) .  However,  the  time-rate-changes  reach  their 

maximum  values at a - value  of  0.25 which corresponds  to  a 6 of  75.5" 

and  thereafter  drops  off  gradually.  These  trends  are  also  evident  for 

the  other RPM value  and  for  various  vortex  radii  positions.  Similar 

trends  are also  obtained  using  equations ( A . l )  and  (A.2)  of  the 

z. 
R 
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appendix  when  applied to  the  vortex-induced  velocity  profiles  which  the 

blade  experiences  for  different  intersection  angles. 

The effect  of  vortex  strength  on  these  two  parameters,  namely 

ACa and -, is  shown  in Figs. 21a  and  21b  for  the  case  of Z / R  = 0 and 

for  different  rotor  plane  positions (--). The vortex  strengths  are 

non-dimensionalized with tip  velocity  and  the  radius  of  the  blade. It 

At 
h 

is  noticed  that  both  parameters  increase  linearly,  giving  different 

slopes  for  different  h/c  locations. The maximum  slope of  these  two 

parameters  occurs when the  blade  passes  through  the  center  of  the 

vortex,  thus  indicating  maximum  changes. 

Simplified  Quasi-Steady  Analysis 

A  simplified  analysis  can  be  made  from  geometrical  considerations 

for  the  blade  passing  through  a  vortex with its  full  span in the 

vortex.  Consider Fig.  22 which shows  schematically  the  various  velo- 

city  components  acting  on  the  blade. For the  general  case, when the 

blade  is  passing  through  the  vortex  at  a  radial  distance  h  from  the 

center,  the  blade  experiences an angle  of  attack a given by 

L tan a = 
V f v (r) - h r 0  r 

where Vr is the  velocity of the  blade  at  a  spanwise  station r. The 

positive  or  negative  sign  corresponds  to  the  blade  passing  through  the 

positive  or  negative  radius  side  of  the  vortex  as  defined in  Fig. 1. 

For small  angles,  tan a = a in radians 

C = a  a a 0  
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A c c o r d i n g   t o   r e f e r e n c e  2, 

e x c e p t   f o r  a s m a l l   e y e   a t   t h e   c e n t e r  of t h e   v o r t e x .   I n  terms of 

v e l o c i t y  

r v ( r )  = a v (a )  an(-) + a v (a )  r 
e e a e 

S u b s t i t u t i n g   i n   t h e   e q u a t i o n   ( 5 . 2 )  

r 

( 5 . 5 )  

F o r   t h e   c a s e  of t h e   b l a d e   p a s s i n g   t h r o u g h   t h e   c e n t e r   o f   t h e   v o r t e x  

( i . e . )  h = 0 

cL? - 
- 

and  the   peak   va lue  of C when r = a ,  i s  a' 
ve   (a>  

= a  - 
%peak o Vr 
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Therefore 

For  comparison 

terms  of  chord 

J 

with  the  experimental  results,  distance  travelled  in 
f l l \  

lengths  is given by - = - r ' '  a for the  blade  passing 
C C (2) (,I h2 112 

r 

through  the  center  of  the  vortex  and - x = -  
C C 

(1 - - 2 )  (,I r 
for  the  rotor  plane  at a  distance  of h  from the :enter of  the vortex. 

It should  be noted that  the  theoretical  peak  value  of  the 

section  lift  coefficient  obtained  from  the  approximate  analysis  over- 

estimates  the  experimental  peak  value. The values  are  tabulated in 

Table 1. However  equation (5.8) does  predict  the  variation  of  the 

ratio of section lift  coefficient  to  peak  section  lift  coefficient  as 

the  blade  cuts  through  a  vortex. So the  above  equation (5.8) is 

evaluated  using  the  individual  experimental  peak  section  lift 

coefficients.  These  are  compared with the  experimental  results  in 

Figs. 23a,b,c for  values of ; = 0, 0.25, -0.25  respectively  where  the 

agreement  is seen to  be  surprisingly good. 

h 
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Table 1 

Theoretical  and  Experimental  Peak 
Section  Lift  Coefficient  Values 

- h 
C 

'Qpeak 
(Theory) 

+ c  speak - 'dpeak 
(Experiment) 

Fig. 

0 

0 .25 

-0.25 

1.493 

0.940 

1.140 

0.225 

0.225 

0.125 

0 170 

0.075 

0.130 

23a 

23b 

23c 
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VI. CONCLUSIONS 

Results  of  an  experimental  investigation  of  rotor  blade-vortex 

interaction  have  been  presented. The following  conclusions  are  drawn 

from  the  results  obtained  at  a  spanwise  station of 95%. 

1. This  investigation  proves  the  feasibility of  studying 

the rotor-vortex  interaction  effects  in  a  wind-tunnel 

for  well-defined  vortex  and  rotor  parameters. 

2. A typical  distance of 10 chord  lengths,  equal  to 

approximately 65" of azimuthal  travel,  is  needed 

before  the  vortex  effects  are  negligible. 

3 .  Maximum  section  lift  coefficient  differences,  ACa, 

and  their  time-rate-changes  always  reach  their 

maximums  if  the  rotor  penetrates  the  center of the 

vortex. 

4 .  Values  as  high  as 0.7 in OC and 0.6 x 10 /sec in 3 
a 

AC 

At 
- P, were  measured  in  the  present  experiments. 

5.  ACa and AA increase  approximately  linearly  with 
At 

vortex  strength.  The  slopes  of  these  lines  are 

different  for  different  rotor  plane  and  shaft  axis 

positions. 

6. AC  increases  as  the  shaft  axis  is  moved  away  from 

the  vortex  axis  (i.e.  as  the  intersection  angle, 6, 
a 

decreases)  due  to  the  combined  effect  of  increased 

resultant  velocity  and  vortex  dimensions  as  the 

blade  experiences  them.  However, a first  increases AC 

At 

55 



up  to an intersection  angle  of 71.5" starting  from 

90" and  then  decreases  gradually with the  decrease 

of  intersection  angle. 

7. A simplified  quasi-steady  approach  predicts  reasonably 
C 

well  the  variation  of - , but  over-estimates  the 
'Qpeak 

peak  section  lift  coefficient  as  the  blade  passes 

a 

through  a  vortex. 

8 .  The rotor  blades  can  experience  as  much  negative  lift 

as  positive  lift  during  their  encounter with the  tip 

vortex. 
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APPENDIX 

BLADE  LOADING 

The problem  of  predicting  the  time  history  of  the  loading on  a 

small  area  of  the  blade  subjected  to  a  gust  of  finite  length was 

treated by Leverton  and  Taylor  in  reference 5. This  small  area of 

the  blade  was  treated  simply as a  two-dimensional  airfoil. 

Approximating  the  gust  profile to a  sine  wave,  and  representing 

the  gust  as  a  series  of  harmonics  based on the  gust  width  as  the 

fundamental  length,  the  amplitude  of  the  harmonics  falls  off  rapidly. 

Using  this  approach,  the  loading t7as given by two  separate  expressions, 

one  when the  blade  is  experiencing  the  gust  (equation  A.l)  and  the 

other when the  loading  decays  as  the  blade  passes  out of its  effect 

(equation A .  2) c r 
1 0.065 
” 

L m -  2 

(A. 1) 

-0.13s K [Sin(K s-01) + e-‘ ,&I} 
m Km + 1 

-0.13s 
Sin(Km x-@) + 

0.5 e 

Km + 1 

(A. 2). 

where 

m = harmonic  order  of  gust 
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s = non-dimensional  distance  measured  from  beginning of 

gust, - Vt 
b 

b = half  chord = - C 2 
Y = total  length  of  gust 

x = non-dimensional  length of gust x ' b  

Q: = tan -1 Km 

-1 K 
@ = tan (6%) 

The  total loadhg  can be determined by the  addition  of  those due 

to individual  harmonics 
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